

United States Geological Survey Certificate of Analysis

Syenite STM-1

A sample of peralkaline nepheline syenite was collected from a sill that underlies Table Mountain which is approximately 60 km WNW of Eugene, Oregon. The rock sample was light to medium gray and had a glassy luster. The material was holocrystalline and very fine to fine grained, having a very pronounced trachytic texture (Flanagan, 1976).

Element concentrations were determined by cooperating laboratories using a variety of analytical methods. Certificate values are based primarily on international data compilations (Abbey, 1983; Gladney and Roelandts, 1988; Govindaraju, 1994). Initial USGS studies (Flanagan, 1976) provide background information on this material.

Recommended values

Oxide	Wt %		±	Oxide		Wt %		±
SiO_2	59.6		0.49	CaO		1.09		0.06
$Al_2\tilde{O}_3$	18.4		0.23	MgO		0.10		0.02
$\operatorname{Fe}_{2}^{2}\operatorname{O}_{3}^{3}$	2.87		0.02	Na ₂ O		8.94		0.20
FeO 3	2.09		0.03	K_2^2 O		4.28		0.07
Fe_2O_3T	5.22		0.1	$P_2^2O_5$		0.16		0.01
2 3				$T_{iO_2}^{2}$		0.14		0.01
Element	μg/g	±	Element	μg/g	±	Element	μg/g	±
Ba	560	60	Gd	9.5	0.8	Sm	13	1
Be	9.6	0.6	Hf	28	2	Sr	700	30
Ce	260	18	La	150	6	Ta	19	1.2
C1	460	40	Mn	1700	120	Tb	1.6	0.2
Cs	1.5	0.1	Nb	270	12	Th	31	3
Dy	8.1	0.5	Nd	79	7	U	9.1	0.1
Er	4.2	0.4	Pb	18	1.8	Y	46	5
Eu	3.6	0.3	Rb	118	6	Yb	4.4	0.4
F	910	50	Sb	1.7	0.2	Zn	235	22
Ga	35	5	Sc	0.61	0.07	Zr	1210	120
Element	μg/g		Element	μg/g		Element	μg/g	
Ag	0.08		Co	0.9		Ni	3	
As	4.6		Cr	4.3		S_{tot}	43	
В	6.4		Cu	4.6		Sn	6.8	
Bi	0.13		Li	32		Tm	0.7	
Cd	0.27		Mo	5.2		V	8.7	

Denver, Colorado revised March 1995

David B. Smith Branch of Geochemistry

Glossary

 ${
m Fe_2O_3T}$ Total iron expressed as ${
m Fe_2O_3}$ ${
m S_{tot}}$ Total concentration of sulfur

Wt % Percent of total element concentration

μg/g Total element concentration expressed as micrograms of element

per gram of solid sample

± One standard deviation

Notes

Unless otherwise indicated total element concentrations are reported for material on an asreceived basis, i.e., no drying.

Ordering Information

USGS reference materials (RMs) may be obtained directly from Dr. Stephen A. Wilson at the address or numbers listed below. The price for each bottle of RM is \$65.00 (U.S.) **except** DGPM-1 which is \$150.00 (U.S.). This cost includes all shipping and handling charges using normal mail delivery. Urgent requests for RMs should be initiated by FAX or e-mail. If required, overnight delivery is available with these charges added to the final bill.

Dr. Stephen A. Wilson Tel: 303-236-2454

U.S. Geological Survey FAX: 303-236-3200 or 303-236-1425

Box 25046, MS 973 e-mail: swilson@usgs.gov

Denver, CO 80225

Payment Procedure

Domestic customers: Payment options include purchase order, check, money order, or credit card (Visa, Mastercard).

International customers: Payment on foreign orders may be made by any of the following:

- a. Banker's draft against U.S.A. bank,
- b. International money order,
- c. Purchase order,
- d. Credit card (Visa, Mastercard)

Payments for domestic or international orders using a credit card receive a 10% discount on the final bill.

URL: http://minerals.cr.usgs.gov/geochem/syenitestm1.pdf

Page Maintainer: bramsey@usgs.gov

